

Personalised Healthcare (PHC) with Foundation Medicine (FMI)

Fatma Elçin KINIKLI,

FMI Turkey, Science Leader

Agenda

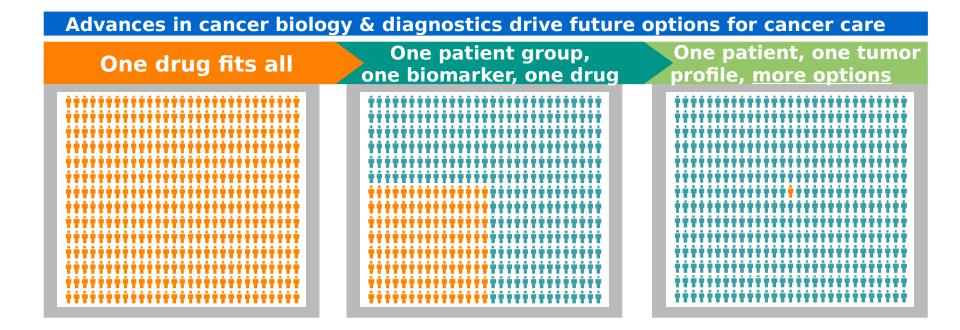
PHC Approach Provides Better Patient Outcome

 FMI offers Comprehensive Genomic Profiling, providing patients with more and personalised therapeutic options to improve outcomes

Agenda

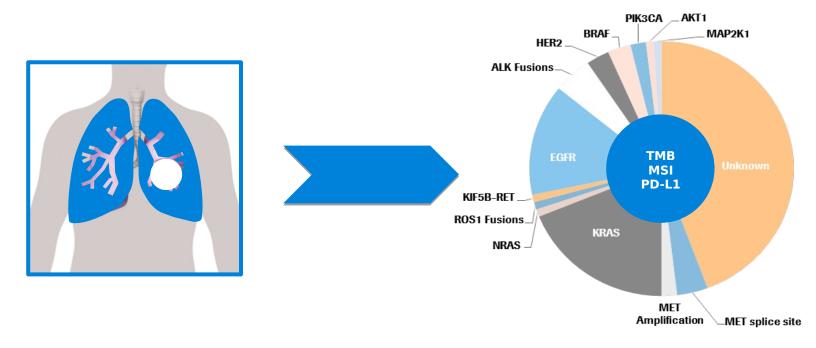
PHC Approach Provides Better Patient Outcome

PFMI offers Comprehensive Genomic Profiling, providing patients with more and personalised therapeutic options to improve outcomes


1. Foundation Medicine, Inc. (2017) https://www.foundationmedicine.com/ Accessed Feb 2017; 2. Schwaederle, M., et al. (2015) Mol Cancer Ther. 14(6):1488-94; 3. Wheler, J., et al. (2016) Cancer Research 76(13): 3690-701; 4. Rozenblum, A.B., et al. (2017) J Thorac Oncol. 12(2):258-68; 5. Drilon, A., et al. (2015) Clin Cancer Res. 21(16):3631-9. 6. Kris MG et al. (2014) JAMA 311(19):1998-2006. 7. Barlesi F et al. (2016) Lancet S0140-6736(16)

The genetic complexity of cancer

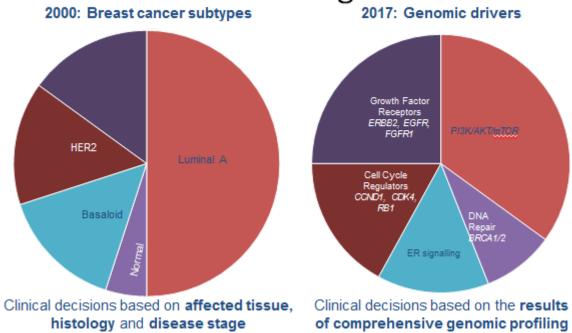
Cancer care becoming more personalised by understanding disease biology



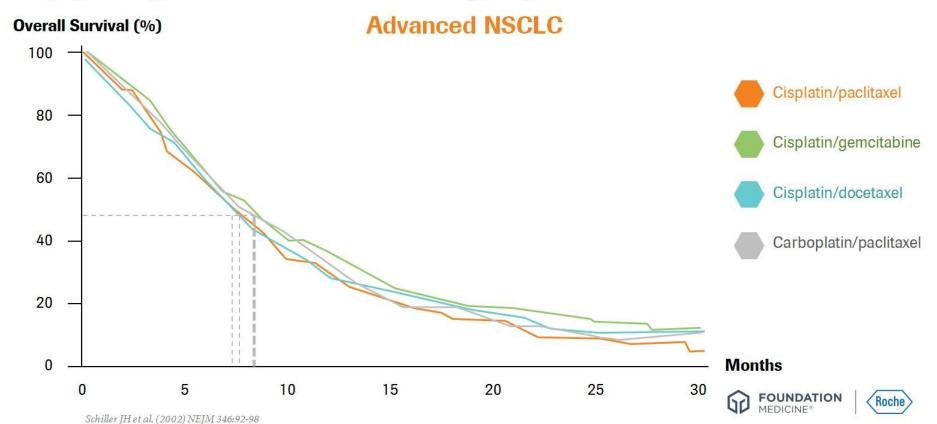
^{1.} Agyeman, A.A. and Ofori-Asenso, R. (2015) J Pharm Bioallied Sci 7(3):239–244;

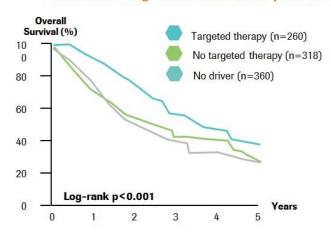
^{2.} Schwaederle, M. and Kurzrock, R. (2015) Oncoscience 2(10):779-80.

Cancer care is increasingly complex

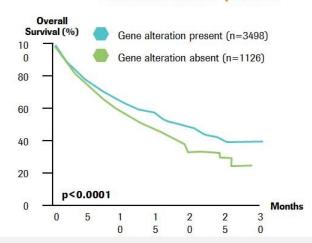

2000 2015

The classical approach to cancer is evolving




Unmet need in lung cancer

Negligible difference between chemotherapy regimens


Profiling has been shown to improve outcomes in lung cancer patients

Metastatic lung adenocarcinoma patients

- Biomarkers associated with targeted therapies in guidelines: HER2, EGFR, ALK, BRAF, MET
- Biomarkers not associated with targeted therapies in guidelines: PIK3CA, MEK, AKT1, KRAS, NRAS

Advanced NSCLC patients

- Biomarkers associated with targeted therapies in guidelines: HER2, EGFR, ALK, BRAF
- Biomarkers not associated with targeted therapies in guidelines: PIK3CA, KRAS

Meta analysis of ~85,000 patients in Phase I, II and III trials

Targeted therapy in of itself is not generally effective – a biomarker is needed

	Р	ooled Ana	lysis	N	/leta-analy	/sis
ARMS type	RR (%)	PFS (Mos)	OS (Mos)	RR (%)	PFS (Mos)	OS (Mos)
Non-personalized targeted	4	2.6	8.7	7.5	2.5	8.3
Cytotoxic	12	3.3	9.4	16.1	3.3	9.3
Personalized targeted	30	6.9	15.9	31.3	6.1	13.7

Agenda

PHC Approach Provides Better Patient Outcome

 FMI offers Comprehensive Genomic Profiling, providing patients with more and personalised therapeutic options to improve outcomes

Roche and Foundation Medicine Inc. (FMI)

Entered into a broad strategic collaboration in 2015

The strategic collaboration aims to further advance FMI's leading position in molecular information and analysis while providing Roche a unique opportunity to identify and develop novel treatment options for patients

Foundation Medicine is a

molecular information
company leading a
transformation in cancer
care, where each patient's
treatment is informed by a
deep understanding of the
molecular changes that
contribute to their disease

Foundation Medicine's comprehensive genomic profiling approach

Data aggregation and analysis

FMI is taking patients from comprehensive identification of gene alterations to more personalised therapies and improved outcomes

A report connecting patients to targeted therapies

FOUNDATION ONE Date of Birth Me

Patient Name

Report Date

Tumor Type Skin melanoma

For a complete list of the genes assayed and performance specifications,

 Date of Birth
 Medical Facility
 Specimen Received

 Sex
 Male
 Ordering Physician
 Specimen Received

 FMI Case #
 Additional Recipient
 Specimen Site
 Skin

 Medical Record #
 Medical Facility ID #
 Date of Collection

 Specimen ID
 Pathologist
 Specimen Type

ABOUT THE TEST:

FoundationOne™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS TUMOR TYPE: SKIN MELANOMA 10 genomic findings Genomic Alterations Identified[†] NF1 splice site 3709-2A>G 10 therapies associated with potential clinical benefit NRAS Q61K MET R11480 O therapies associated with lack of response PTEN H93Y CDKN2A p14ARF I27fs*20 KDM5C S539* KEL A17E - subclonal* RB1 K202* TERT promoter -124C>T Additional Findings⁺ Tumor Mutation Burden TMB-High: 34.34 Muts/Mb Additional Disease-relevant Genes with No Reportable Alterations Identified⁺ BRAF

MSI &

Report

First page of the

FoundationOne®

THERAPEUTIC IMPLICATIONS

Genomic Findings Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials	
Tumor Mutation Burden TMB-High; 34.34 Muts/Mb	Pembrolizumab Nivolumab Ipilimumab	Atezolizumab	Yes, see clinical trials section	
NF1 splice site 3709-2A>G	Cobimetinib Trametinib	None	Yes, see clinical trials section	
NRAS Q61K	Cobimetinib Trametinib	None	Yes, see clinical trials section	

please refer to the Appendix * See Appendix for details

For more comprehensive information please log on to the Interactive Cancer Explorer™

To set up your Interactive Cancer Explorer account, contact your sales representative or call 1-888-988-3639.

Section on identified genomic alterations

The <u>GENOMIC ALTERATIONS</u> section contains a detailed interpretive statement that references:

- Each gene and its alteration(s)
- Frequency of each genomic alteration(s) identified in patient cohorts with similar tumor type
- Prognosis and biological implication of each genomic alteration(s)
- Potential treatment strategies specific for each genomic alteration

THERAPEUTIC IMPLICATIONS

amplification

Genomic Findings Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials Yes, see clinical trials section	
CCND1 amplification	None	Palbociclib Ribociclib		
PIK3CB amplification	None	None	Yes, see clinical trials section	
EMSY amplification	None	None	None	
FGF19 amplification	None	None PIK30	CB Gene	
FGF3	None	None amplifi	cation phos	

PRESENT LETS IN NO CANALINA

e and Alteration: PIK3CB (PI3K-beta, p110-beta) encodes a member of the class IA phosphoinositide 3-kinases (PIK3CA, PIK3CB, PIK3CD, and PIK3CG), which are essential regulators of cellular proliferation, survival, metabolism and motility. Dysregulation of the PI3K signaling pathway is observed in many human cancers and occurs most frequently through loss of the tumor suppressor PTEN or activating mutations in PIK3CA (p110-alpha). Contrary to PIK3CA, which is frequently mutated within hot spots causing increased kinase activity, mutation of PIK3CB is quite rare^{20,21,22}. PIK3CB amplification has been identified in various tumor types9,23,24, and PIK3CB overexpression has been shown to be oncogenic in vitro25. A patient with PTEN-deficient prostate cancer and PIK3CB amplification had a partial response to the PI3K-beta-selective inhibitor GSK2636771 (de Bono et al., 2015; AACR Abstract CT328).

Frequency and Prognosis: PIK3CB mutation has been reported in up to 1% of prostate adenocarcinoma cases, while amplification has been found in up to 2% of samples analyzed5,26. A constitutively active form of p110-beta induces prostatic intraepithelial neoplasia in a murine prostate tumor model²⁷. In addition, inactivation of p110-beta, but not p110-alpha, was shown to inhibit prostate cancer development in a mouse model drive by PTEN heterozygous deletion28.

Potential Treatment Strategies: Preclinical evidence indicates that PTEN-deficient tumors depend on PI3K-beta^{29,30,81}, and inhibitors selective for PI3K-beta, including GSK2636771 and AZD8186, are in clinical trials for PTEN-deficient tumors (Arkenau et al., 2014; ASCO Abstract 2514, Siu et al., 2015; AACR Abstract CT329). PIK3CB activating alterations may further refine the use of PI3K-beta-selective inhibitors²². Whereas two patients with PTEN-deficient prostate tumors and concurrent PIK3CB L1049R mutation or PIK3CB amplification derived significant clinical benefit with GSK2636771 (de Bono et al., 2015; AACR Abstract CT328), PIK3CB D1067 mutations rendered PTEN-deficient breast cancer cells less sensitive to pan-PI3K or PI3K-beta-selective inhibitors in preclinical assays32.

Section on possible treatments

The <u>THERAPIES</u> section provides further details on:

- Approved therapies to which the patient's tumor type may be sensitive or resistant based on genomic profile
- Approved therapies associated with benefit based on similar genomic alterations in other tumor types*

With information on approved indications, gene association and supporting data

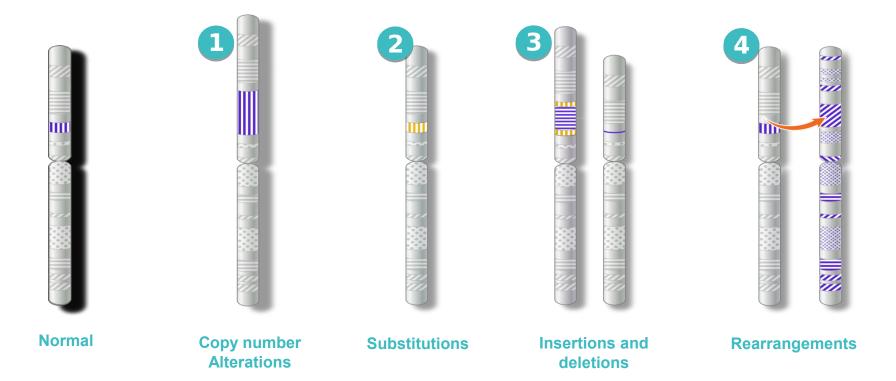
* IMPORTANT: this does **not** indicate evidence for off-label use in patient's tumor type

Section on clinical trials to consider

The <u>CLINICAL TRIALS TO CONSIDER</u> section of the report provides:

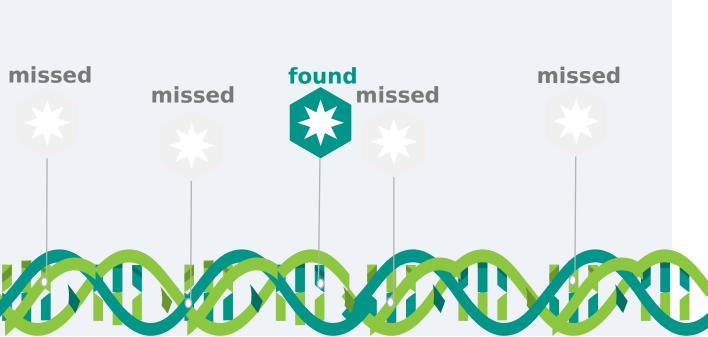
- Rationale for potential clinical trials
- Details on keyword terms used for search on clinicaltrials.gov for relevant clinical trials
- Details on currently available clinical trials for which the patient may be eligible based on the genomic profile of patient's tumor

Agenda


PHC Approach Provides Better Patient Outcome

PFMI offers Comprehensive Genomic Profiling, providing patients with more and personalised therapeutic options to improve outcomes

Four types of ways genes can be altered

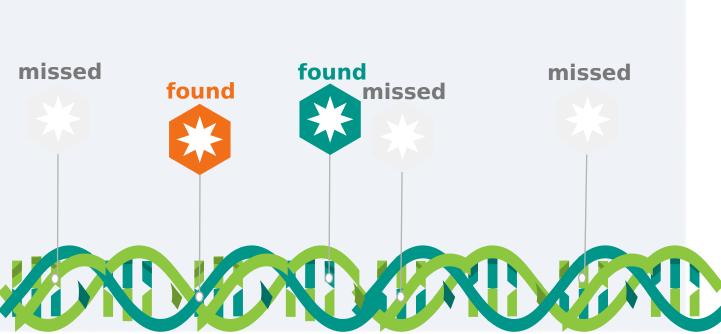


Routine single-marker molecular test The most common type of molecular testing

CATEGORY ONE

Routine single marker molecular tests such as IHC, PCR and FISH that have been used for decades and will continue to play animportant

FISH: fluorescence in situ hybridization; IHC: Immunohistochemistry: PCR: Polymerase chain reaction

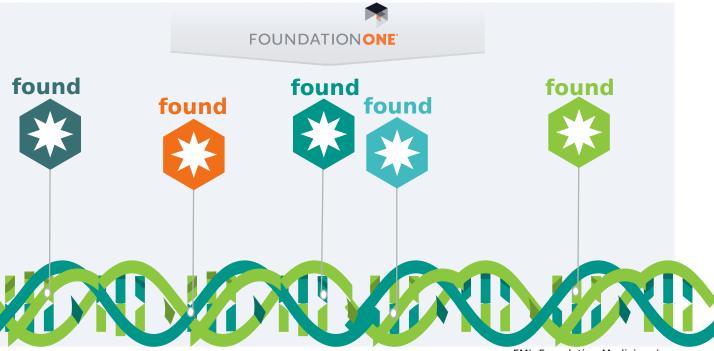

Multi-gene "hot spot" test Broader testing focused on a narrow subset of

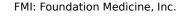
CATEGORY ONE CATEGORY TWO The hot spot NGS panels identify prespecified mutations occurring in

very limited

areas of genes

of interest and

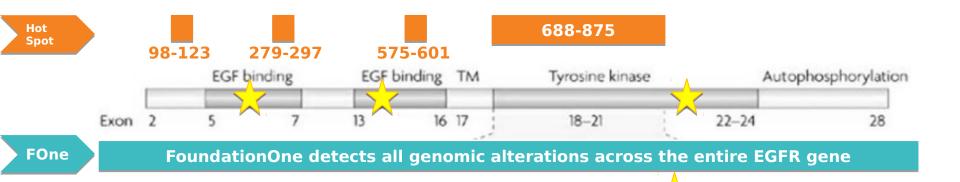




Foundation Medicine® The most comprehensive genomic test available

CATEGORY ONE
CATEGORY
TWO
CATEGORY THREE

FMI's
comprehensiv
e genomic
profiling
approach of
testing all of the
known clinically
relevant cancer
genes for all



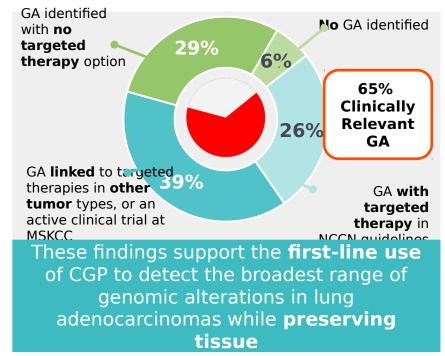
Two Different Targeted Sequencing Approaches Comprehensive Genomic Profiling detects more than Hot Spot NGS

EGFR gene

Hot spot tests detect selective alterations in selective parts of the EGFR gene*

Mutations not detected by hot spend

Agenda


MSKCC experience with FoundationOne® Supporting first-line use of CGP in lung cancer

Background

- 31 lung adenocarcinoma patients with available tissue specimen were identified
- Those patient's tumors harbored no evidence of a genomic alteration via extensive, focused non-NGS testing covering known lung cancer alterations in 11 genes (EGFR, ERBB2, KRAS, NRAS, PRAS, MARSKI, PRASCA, AKTI, AKK

Results

 FoundationOne® detected genomic alterations in 94% of patients with pan-negative lung adenocarcinoma

GA: Genomic Alteration

Clinical utility of finding more alterations with FoundationOne® *NSCLC* patients can benefit from targeted therapies

of EGFR exon 19 deletions missed by hotspot tests¹

of ALK-rearranged cases missed by FISH³

of NSCLC patients with EGFR exon 19 deletions can respond to EGFR tyrosine kinase inhibitors, with median OS > 1 year²

of ALK-rearranged patients identified by FoundationOne respond to ALK inhibitor crizotinib³

^{1.} Schrock AB et al. (2016) Clin Cancer Res. Mar 1.

^{2.} Seguist LV et al. (2007) | Clin Oncol. 25:587-95.

^{3.} Ali AM et al. (2016) The Oncologist

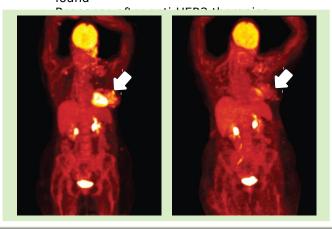
Patient Information

58-year-old female

Diagnosis

Triple negative inflammatory breast

Treatment status


 Refractory to taxanes, dasatinib, bevacizumab, ixabepilone and gemcitabine

 After progressive disease additional biomarker testing done and histology, ER/PR (by IHC) and HER2 (by FISH) confirmed as all negative

FoundationOne® analysis

 The same sample sent for CGP. HER2 was consistent with FISH, but two distinct HER2 mutations (V777L and S310F) found

Patient Information

43-year-old female

Diagnosis

- Breast carcinoma.
- ER positive, PR negative and HER2 negative by FISH and IHC.

Treatment status

After chemotheraphy peritoneal and omental metastases, a left adrenal mass and enlargement of liver metastatases are observed.

FoundationOne® analysis

The sample was found to have an ERBB2 L755S base substitution mutation and the tumors responded to neratinib

TABLE 2. Summary of Clinical Characteristics for 138 Breast Cancers With ERRB2 Short-Variant Mutations

	NOS	IDC	ILC	MUC	
No. of cases	69	40	27	2	
Median age	61 y	60 y	58 y	58 y	
Average age	60.9 y	58.5 y	58 y	58 y	
					Percentage of all
Specimen site					ERBB2 mut sample:
Bone	0	1	0	0	0.7%
Breast	7	28	16	0	37%
Liver	18	5	3	0	18.8%
Lung	5	0	1	0	4.3%
Lymph node	14	2	3	1	14.5%
Other	24	5	4	1	24,6%

Patient Information

58-year-old female

Diagnosis

- Metastasic inflamatory breast carcinoma.
- Triple negative by FISH and IHC.

Treatment status

Patient was previously treated with multiple courses of cytotoxic chemotherapy. However disease remain active.

FoundationOne® analysis

2 distinct ERBB2mut, 1 each in the kinase domain (V777L) and the ECD (S310F). The patient received multiple anti-HER2 targeted therapies combined with chemotherapy and demonstrated substantial clinical response.

Patient Information

58-year-old female

Diagnosis

- Breast carcinoma.
- ER positive, PR positive and HER2 negative by FISH and IHC.
- With the treatment refractory hepatic metastasis.

FoundationOne® analysis The sample was found to have ERBB2 S310F mutation and positive HER2. Rearrangements Copy Number Gain Substitutions/Indels Figure 2. Long tail plot of genomic alterations in 138 cases of ERBB2-mutated recurrent metastatic breast cancer

Agenda

Analytic Validation

nature biotechnology

Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing

Garrett M Frampton^{1,9}, Alex Fichtenholtz^{1,9}, Geoff A Otto¹, Kai Wang¹, Sean R Downing¹, Jie He¹, Michael Schnall-Levin¹, Jared White¹, Eric M Sanford¹, Peter An¹, James Sun¹, Frank Juhn¹, Kristina Brennan¹, Kiel Iwanik¹, Ashley Maillet¹, Jamie Buell¹, Emily White¹, Mandy Zhao¹, Sohail Balasubramanian¹, Selmira Terzic¹, Tina Richards¹, Vera Banning¹, Lazaro Garcia¹, Kristen Mahoney¹, Zac Zwirko¹, Amy Donahue¹, Himisha Beltran^{2,3}, Juan Miguel Mosquera^{3,4}, Mark A Rubin^{3,4}, Snjezana Dogan⁵, Cyrus V Hedvat⁵, Michael F Berger⁵, Lajos Pusztai⁶, Matthias Lechner⁷, Chris Boshoff⁷, Mirna Jarosz¹, Christine Vietz¹, Alex Parker¹, Vincent A Miller¹, Jeffrey S Rossi^{1,8}, John Curran¹, Maureen T Cronin¹, Philip J Stephens¹, Doron Lipson¹ & Roman Yelensky¹

As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPC) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.

Base Substitutions

Sensitivity: >99.9% PPV: >99%

Insertions/Deletions

Sensitivity: 98% PPV: >99%

Copy Number Alterations

Sensitivity: >95% PPV: >99%

Gene Fusions¹

Sensitivity: >95% PPV: >99%

(>99% for ALK fusion²)

- 1. Based on analysis of coverage and re-arrangement structure in the COSMIC database for solid tumor fusion genes where alteration prevalence could be established, complemented by detection of exemplar rearrangements in cell line titration experiments.
- 2. Yelensky et al, Presented at AACR 2014

FoundationOne CDx: First Commercial Pan-tumour Comprehensive Genomic Profiling Assay Approved by FDA

- First assay, incorporating a broad range of companion diagnostics
- 17 targeted therapies
 across five types of
 advanced cancers: non small cell lung,
 melanoma, breast,
 colorectal and ovarian
 cancers
- Reports the genomic markers MSI and TMB to help inform decisions on immunotherapy

Summary Why consider profiling with Foundation Medicine?

- Profiling has been shown to improve outcomes for patients
- Foundation Medicine's profiling services are designed to capture all four types of genomic alterations and accurately identifies actionable targets across a spectrum of cancers
- These alterations are delivered in a comprehensive report which describes potential therapies, trials, and the latest clinical literature to inform physician's decisions
- Evidence has shown FoundationOne® detects alterations in patients that are pan-negative with single gene panels, and in some indications can improve outcomes

Profiling with FoundationOne® finds more clinicallyrelevant alterations and can lead to better patient outcomes

Doing now what patients need next